To view this presentation:

  • If you have an MRS account, click the Login button above.
  • New to MRS?  Create a free account here



  0       0

2014 MRS Spring Meeting


Z12.01 - Tactile Transducers Based on Organic Charge Modulated FETs: An Innovative Approach for Reproducing the Sense of Touch on Compliant Substrates


Apr 25, 2014 11:00am ‐ Apr 25, 2014 11:15am

Description

In this work we present an innovative structure for the realization of tactile transducers on flexible plastic substrates. The core of the device is a floating gate Organic Field Effect Transistor (OFET) biased through a control capacitor and with a sensing area directly connected to the floating gate. The floating gate dielectric has been realized by using a combination of two different ultrathin insulating materials (average thickness of 25 nm), composed by alumina (grown on a pre-deposited aluminum film that acts as the floating gate electrode) and Parylene C. Thanks to the high capacitance coupling the fabricated OTFTs can be operated at voltages as low as 1 V. A control capacitor is fabricated on the floating gate and used for setting the operational working point of the sensor.

In this way, if an additional electrical charge is somehow induced onto the sensing area fabricated on the floating gate, it leads to a charge separation in floating gate electrode, which, in turns, induces a modulation of the transistor threshold voltage. In order to achieve the sensitivity to pressure, a piezoelectric thin film, namely PVDF-TrFE, is transferred on the sensing area of the device. In this way, when pressure is applied on the PVDF-TrFE, the charges induced in the piezoelectric film, lead to a variation of OFET threshold voltage and a current variation can be detected at each pressure event. We will demonstrate that the fabricated devices are characterized by a reproducible response to applied forces within the range of 0-5 N with a resolution of 0.1 N.

Moreover, PVDF polymer is also characterized by pyro-electric properties, which make it suitable also for the realization of temperature sensors. This feature have been also exploited, and preliminary results on the fabrication and characterization of temperature sensors will be presented. The introduced approach represents a very simple and innovative solution for the realization of multimodal tactile sensing systems on highly flexible and possibly compliant substrates, which could be employed for a wide range of applications in the biomedical field and particularly suitable for the fabrication of artificial electronic skin.

Speaker(s):

You must be logged in and own this session in order to post comments.

Print Certificate
Review Answers
Print Transcript
Completed on: token-completed_on
Review Answers
Please select the appropriate credit type:
/
test_id: 
credits: 
completed on: 
rendered in: 
* - Indicates answer is required.
token-content

token-speaker-name
token-index
token-content
token-index
token-content
token-index
token-content
token-index
token-content
token-index
token-content
token-index
token-content
/
/
token-index
token-content
token-index
token-content