To view this presentation:

  • If you have an MRS account, click the Login button above.
  • New to MRS?  Create a free account here



  0       0

2014 MRS Fall Meeting


NN7.05 - Modeling of Nonbonded Interactions in Graphene and Carbon Nanostructures


Dec 3, 2014 3:45pm ‐ Dec 3, 2014 4:15pm

Description

We consider carbon nanostructures that consist of one or more graphene sheets. Each graphene sheet is a one-atom thick and contains carbon atoms arranged in a hexagonal lattice. Neighboring atoms within a sheet interact via strong covalent bonds, making graphene essentially inextensible, but amenable to large elastic bending deformation. The interaction between the sheets is of a weak Van-der-Waals-type and allows for a relatively easy sliding.

When upscaled to the macroscopic level, each graphene sheet can be represented by an elastic shell and the energy of interactions within a sheet reduces to an elastic energy. The macroscopic analog of weak interactions is typically thought of as a pressure-type term that depends only on the local distance between the sheets.

In my talk, I will demonstrate that this reduction is not always correct as the weak interactions also depend on relative arrangements of atoms of the neighboring shells. I will discuss how one can borrow from the idea of a Gamma-development from calculus of variations to obtain a macroscopic Ginzburg-Landau-type model for carbon nanostructures. I will also connect mathematical predictions to experimental observations.

Speaker(s):

You must be logged in and own this session in order to post comments.

Print Certificate
Review Answers
Print Transcript
Completed on: token-completed_on
Review Answers
Please select the appropriate credit type:
/
test_id: 
credits: 
completed on: 
rendered in: 
* - Indicates answer is required.
token-content

token-speaker-name
token-index
token-content
token-index
token-content
token-index
token-content
token-index
token-content
token-index
token-content
token-index
token-content
/
/
token-index
token-content
token-index
token-content