To view this presentation:

  • If you have an MRS account, click the Login button above.
  • New to MRS?  Create a free account here



  0       0

2015 MRS Spring Meeting


C12.05 - Achieving High Efficiencies for Planar Heterojuction Formamidinium Lead Iodide Perovskite Solar Cells in Controlled Humid Environments


Apr 10, 2015 2:30pm ‐ Apr 10, 2015 2:45pm

Description

Perovskite solar cells (PSCs) have attracted much attention in recent years. Their metal halide composition holds the promise of achieving highly efficient and cost effective devices due to high quality crystalline perovskite thin films with tunable absorption edge and high extinction coefficient. Fully solution processed devices are advantageous for future large-scale industrial applications. Methylammonium lead iodide (MAPbI3) with a bandgap of 1.55 eV and an absorption onset in the near infra-red (800 nm) is mostly investigated for PSCs since it can absorb photons in both visible and near-infrared solar spectrum. Furthermore, its capability of acting simultaneously as a hole conductor and electron transporter makes it suitable for planar heterojuntion PSCs. Recently, it was observed that replacing the methylammonium cation (CH3NH3+) by a formamidinium cation (CH(NH2)2+) in the lead iodide perovskite lead to a decreased band gap value (1.47 eV) and a shift in the absorption edge to 850 nm of the perovskite thin film. In this research, we report the fabrication of a high efficiency planar heterojuction formamidinium PSCs. The device architecture is defined by a fluorine-doped tin oxide glass substrate coated with a titanium dioxide (TiO2) thin film, a FAPbI3 absorber layer, a 2,2,7,7-tetrakis(N,N-di-p-methoxyphenylamine)-9,9-spirobifluorene (spiro-OMeTAD) hole transporting layer and silver electrodes. The purity and quality of the perovskite thin film were determined by UV-vis spectroscopy, X-rays diffraction (XRD) and energy diffraction spectroscopy (EDS). Field emission scanning electron microscopy (FE-SEM) was used to characterize the morphology of the absorber layer. Furthermore, the device performances were studied as a function of the relative humidity (RH) (%).The impact of RH content on the device characteristics and charge carrier dynamics will be discussed. The stability of FAPbI3 based films and devices will be compared to those based on MAPbI3.

Speaker(s):

You must be logged in and own this session in order to post comments.

Print Certificate
Review Answers
Print Transcript
Completed on: token-completed_on
Review Answers
Please select the appropriate credit type:
/
test_id: 
credits: 
completed on: 
rendered in: 
* - Indicates answer is required.
token-content
token-speaker-name image
token-speaker-name
token-index
token-content
token-index
token-content
token-index
token-content
token-index
token-content
token-index
token-content
token-index
token-content
/
/
token-index
token-content