To view this presentation:

  • If you have an MRS account, click the Login button above.
  • New to MRS?  Create a free account here



  0       0

2015 MRS Spring Meeting


C9.01 - Morphological Control and Charge Recombination Kinetics for Perovskite Solar Cells


Apr 9, 2015 3:30pm ‐ Apr 9, 2015 4:00pm

Description

The development of all solid-state thin-film solar cells has reached a new milestone when the devices made of organometallic lead halide perovskite materials were reported with power conversion efficiency (PCE) exceeding 19 %. The key issue to make a device with a great photovoltaic performance for perovskite solar cells is to control the film morphology of perovskite under different experimental conditions. Diverse processing techniques were reported according to either a one-step or a sequential method to synthesize the required perovskite layer on top of the contact electrode with either a mesoscopic or a planar interface. In this lecture, I will demonstrate how the film morphology of perovskite can be controlled via varied synthetic approaches. For example, the perovskite layer can be produced under the condition of fast crystallization deposition using either toluene or chlorobenzene as an anti-solvent to induce a fast crystallization. The other approach is to use a proper additive such as hydroiodic acid (HI) to produce homogeneous precursor solutions prior to the following spin-coating step. Without adding the HI additive, one-dimensional dendroid microcrystals were produced with a poor surface coverage. When the HI additive was added in the perovskite stock solution, uniform and pinhole-free perovskite nanocrystals with full surface coverage were observed. For a p-type planar device ITO/PEDOT:PSS/CH3NH3PbI3/PCBM/Ag fabricated using such a synthetic approach to generate the CH3NH3PbI3 layer, the power conversion efficiency attained 8 % with the short-circuit current density over 18 mA cm-2. Photo-induced absorption (PIA) spectra and nanosecond transient absorption (ns-TAS) kinetics were also performed to understand the electron-hole recombination rates responsible for the corresponding device performances.

Speaker(s):

You must be logged in and own this session in order to post comments.

Print Certificate
Review Answers
Print Transcript
Completed on: token-completed_on
Review Answers
Please select the appropriate credit type:
/
test_id: 
credits: 
completed on: 
rendered in: 
* - Indicates answer is required.
token-content

token-speaker-name
token-index
token-content
token-index
token-content
token-index
token-content
token-index
token-content
token-index
token-content
token-index
token-content
/
/
token-index
token-content
token-index
token-content