To view this presentation:

  • If you have an MRS account, click the Login button above.
  • New to MRS?  Create a free account here



  0       0

2015 MRS Spring Meeting


GG7.05 - Electrowetting on Bio-Inspired Soft Liquid-Infused Film (EWOLF): Complete Reversibility and Controlled Droplet Oscillation Suppression for Fast Optical Imaging


Apr 9, 2015 3:15pm ‐ Apr 9, 2015 3:30pm

Description

Electrowetting on dielectric (EWOD), owing to its ability to electrically manipulate tiny individual droplets without involving movable mechanical parts, has received much attention in the past two decades [1, 2]. Despite tremendous promise, the use of solid dielectric layer between the aqueous droplet and underlying electrode is associated with inevitable physical and chemical heterogeneities [3, 4], leading to limited functionalities. For example, owing to the large contact angle (CA) hysteresis, contact line pinning [5] as well as CA saturation [6] at high voltage, it remains challenging to achieve reversible electrowetting with a large degree of switchability in ambient conditions. Moreover, activating droplet in EWOD is vulnerable to pronounced oscillation in response to an abrupt external stimulus, resulting in elongated time for the droplet to reach its equilibrium state [7]. Here, we demonstrate a new paradigm of electrowetting on bio-inspired soft liquid-infused film (EWOLF) that allows for the enhanced reversibility and faster response time to reach the steady state simultaneously. The liquid-infused film is achieved by locking a liquid lubricant in a porous membrane through the delicate control of wetting properties of the liquid and solid phases. Taking advantage of the negligible contact line pinning at the liquid-liquid interface [8, 9], the droplet response in EWOLF can be electrically addressed with enhanced degree of switchability and reversibility compared to the conventional EWOD. Moreover, we show that the infiltration of liquid lubricant phase in the porous membrane also efficiently enhances the viscous energy dissipation, suppressing the droplet oscillation and leading to fast response without sacrificing the desired electrowetting reversibility. Meanwhile, we find that the enhanced damping effect associated with the EWOLF can be tailored by manipulating the viscosity and thickness of liquid lubricant. We also demonstrate the feasibility of developing adaptive liquid lens for fast focusing using the as-proposed EWOLF. References: [1] B. Berge, C. R. Acad. Sci. II 317, 157 (1993). [2] H. J. J. Verheijen and M. W. J. Prins, Langmuir 15, 6616 (1999). [3] G. Manukyan, J. M. Oh, D. van den Ende, R. G. H. Lammertink, and F. Mugele, Phys. Rev. Lett. 106, 014501 (2011). [4] G. McHale, C. V. Brown, M. I. Newton, G. G. Wells, and N. Sampara, Phys. Rev. Lett. 107, 186101 (2011). [5] X. M. Chen, R. Y. Ma, J. T. Li, C. L. Hao, W. Guo, B. L. Luk, S. C. Li, S. H. Yao, and Z. K. Wang, Phys. Rev. Lett. 109, 116101 (2012). [6] J. Liu, M. R. Wang, S. Chen, and M. O. Robbins, Phys. Rev. Lett. 108, 216101 (2012). [7] S. R. Annapragada, S. Dash, S. V. Garimella, and J. Y. Murthy, Langmuir 27, 8198 (2011). [8] A. Lafuma and D. Qu�r�, EPL 96, 56001 (2011). [9] T. S. Wong, S. H. Kang, S. K. Y. Tang, E. J. Smythe, B. D. Hatton, A. Grinthal, and J. Aizenberg, Nature 477, 443 (2011).

Speaker(s):

You must be logged in and own this session in order to post comments.

Print Certificate
Review Answers
Print Transcript
Completed on: token-completed_on
Review Answers
Please select the appropriate credit type:
/
test_id: 
credits: 
completed on: 
rendered in: 
* - Indicates answer is required.
token-content
token-speaker-name image
token-speaker-name
token-index
token-content
token-index
token-content
token-index
token-content
token-index
token-content
token-index
token-content
token-index
token-content
/
/
token-index
token-content