To view this presentation:

  • If you have an MRS account, click the Login button above.
  • New to MRS?  Create a free account here



  0       0

2015 MRS Spring Meeting


GG9.03 - Direct Intracellular Delivery of Synthetic Biomolecules Using Nanostraws


Apr 10, 2015 2:15pm ‐ Apr 10, 2015 2:30pm

Description

Many active biomolecules are available to perturb cell function by direct addition to cell culture media, including receptor ligands and antibodies. Drug delivery mechanisms interact with the cell membrane to deliver molecules directly into cells and generate exponentially more possibilities for cell perturbation, especially the option for effecting permanent change in cells by altering their genome, and the ability to directly perturb the central dogma by altering mRNA transcription and translation into protein. The majority of these active biomolecules have similar molecular structure, which led to the development of delivery vehicles specific for delivering DNA, peptides, and other classes of molecules. Recently, synthetic biomolecules have been developed which have hybrid characteristics, often due to the addition of functionality such as fluorescence or tailored binding sites. These synthetic functionalities could represent another exponential leap forward for studying cells in theory, but these molecules often lack an option for intracellular delivery due to their hybrid structure, limiting their practical use. Here we show the use of a microfabricated supported nanotube structure, called nanostraws, to deliver synthetic biomolecules into cells. The nanostraws are a nanobio interface, which create fluidic conduits into the cell for molecular transport. We focus on two types of molecules: synthetic carbohydrates with click chemistry moieties that, when delivered into cells, can be used to track metabolic pathways, and modified peptides with active sites that can be used to track enzyme activity. The delivery of these disparate molecules using the same technique demonstrates the utility of nanostraws as a non-specific delivery mechanism, capable of delivering synthetic molecules of diverse structures.

Speaker(s):

You must be logged in and own this session in order to post comments.

Print Certificate
Review Answers
Print Transcript
Completed on: token-completed_on
Review Answers
Please select the appropriate credit type:
/
test_id: 
credits: 
completed on: 
rendered in: 
* - Indicates answer is required.
token-content

token-speaker-name
token-index
token-content
token-index
token-content
token-index
token-content
token-index
token-content
token-index
token-content
token-index
token-content
/
/
token-index
token-content
token-index
token-content