To view this presentation:

  • If you have an MRS account, click the Login button above.
  • New to MRS?  Create a free account here



  0       0

2015 MRS Spring Meeting


L2.05 - On the Mechanics of an Engineered Living 1D Swimmer at Low Reynolds Number from Cardiomyocytes


Apr 7, 2015 2:45pm ‐ Apr 7, 2015 3:00pm

Description

There is a rich diversity of flagellar swimmers in nature. In general, they use a long tail, known as flagellum or celia, to propel themselves in fluids. Due to their small size, the fluid around them appears as viscous, resulting in low Reynolds number dynamics. Thus, there is no inertial component in the propulsion. Until to date, there is no engineered low Reynolds number swimmer that can propel itself autonomously. Earlier efforts resulted in swimmers that are driven by external magnetic fields. Here we present a swimmer that propels itself autonomously by using live rat cardiomyocytes. The swimmer consists of a flexible tail and a rigid head. Cardiomyocytes are plated on the tail near the head. The cells self-organize themselves by interacting with the flexible tail substrate, and with each other, and emerge as a group all beating in synchrony. The cell forces bend and deform the tail with time against the viscous drag of the fluid. This fluid-structure interaction results in a bending wave that travels from head to the tail end giving rise to a time irreversible dynamics. Such motion results in a net propulsive force on the swimmer. The swimmer moves forward by overcoming the longitudinal viscous drag. The swimmer dynamics is modeled within the framework of slender body hydrodynamics. The model predictions match within 10 percent of the experimental observation. The future potentials of such biological machines will be discussed.

Speaker(s):

  • Taher Saif, University of Illinois at Urbana-Champaign

You must be logged in and own this session in order to post comments.

Print Certificate
Review Answers
Print Transcript
Completed on: token-completed_on
Review Answers
Please select the appropriate credit type:
/
test_id: 
credits: 
completed on: 
rendered in: 
* - Indicates answer is required.
token-content

token-speaker-name
token-index
token-content
token-index
token-content
token-index
token-content
token-index
token-content
token-index
token-content
token-index
token-content
/
/
token-index
token-content
token-index
token-content