To view this presentation:

  • If you have an MRS account, click the Login button above.
  • New to MRS?  Create a free account here



  0       0

2015 MRS Spring Meeting


O7.08 - Ab Initio Study of the Electron-Phonon Interaction in Phosphorene


Apr 9, 2015 11:30am ‐ Apr 9, 2015 11:45am

Description

We perform first-principles calculation of the electron-phonon interactions in phosphorene, a monolayer of black phosphorus, to assess its potential as a thermoelectric material. Electron-phonon matrix elements are extracted from density functional perturbation theory, interpolated to dense meshes using maximally localized Wannier functions, and used in Boltzmann transport equation to calculate electronic transport properties. Simulation results reveal that phosphorene possesses nearly perfect electronic properties for thermoelectric applications: e.g. step-like density of states, anisotropic effective masses and high carrier mobility, which lead to an extraordinary thermoelectric power factor (~1700 ?W/cm-K2 at room temperature, more than 30 times higher than state-of-the-art commercial thermoelectrics). However, the overall thermoelectric performance of phosphorene is largely compromised by its high electronic thermal conductivity. Combined with the calculated lattice thermal conductivity, we predict an optimal zT of ~0.7 in n-type and ~0.8 in p-type up to 800K for a phonon-limited impurity-free phosphorene film.

Speaker(s):

You must be logged in and own this session in order to post comments.

Print Certificate
Review Answers
Print Transcript
Completed on: token-completed_on
Review Answers
Please select the appropriate credit type:
/
test_id: 
credits: 
completed on: 
rendered in: 
* - Indicates answer is required.
token-content
token-speaker-name image
token-speaker-name
token-index
token-content
token-index
token-content
token-index
token-content
token-index
token-content
token-index
token-content
token-index
token-content
/
/
token-index
token-content